液相微萃取(LPME) 或溶劑微萃取(SME) 是上世紀九十年代年開始出現(xiàn)一種新的樣品前處理技術(shù),由Jeannot和Cantwell首先提出。該技術(shù)是由液液萃取(Liquid-liquid extraction,LLE)演化而來的,LLE技術(shù)需要使用大量有機溶劑易造成環(huán)境污染和引發(fā)安全事故,并且用時長,操作繁瑣,很難實現(xiàn)自動化或與分析儀器聯(lián)用。
相比之下,LPME技術(shù)具有試劑用量少,無需專用設(shè)備;萃取、純化、濃縮同時進行,操作簡單,勞動強度小;通過調(diào)節(jié)溶劑的極性或者酸堿性可進行選擇性萃取;基質(zhì)干擾小,成本低廉,方便快捷等特點。適合于低含量目標物的測定。
自上世紀90年代問世以來,液相微萃取技術(shù)得到了快速的發(fā)展,新型萃取模式不斷涌現(xiàn),可以分為三大類:直接液相微萃取、中空纖維液相微萃取和分散液液微萃取。最終制成很小體積的萃取劑可直接進入色譜或電泳系統(tǒng)進行分析。
--液相微萃取的理論基礎(chǔ)--
液相微萃取是一個基于目標物在樣品及小體積的有機溶劑之間平衡分配的過程。
平衡態(tài)直接液相微萃取(Direet-LPME)
對于Direct-LPME體系,目標物在樣品水溶液和有機液滴兩相間分配,系統(tǒng)達到平衡后, 目標物在有機液滴中的含量由與其在樣品溶液中的初始含量存在線性關(guān)系, 據(jù)此進行LPME方法的定量。
平衡態(tài)頂空液相微萃取(HS-LPME)
HS-LPME是三相萃取體系,包括溶液相、頂空相和微滴萃取劑相,還有兩個界面:溶液/頂空相界面和頂空相/萃取劑相界面。當目標物質(zhì)在該體系中達到平衡時,萃取量與初始溶液中目標物的濃度成正比。
其余還有平衡態(tài)液一液一液三相液相微萃取(LLL-LPME)即對于液一液一液三相LPME微萃取。
--液相微萃取的方式--
直接液相微萃取
在該技術(shù)中,一個單液滴被用作萃取相,暴露在樣本水溶液中,基于目標物在水相和萃取相之間不同的親和性實現(xiàn)目標物向萃取相中的轉(zhuǎn)移。萃取完成后,小液滴通過微量進樣針回收,注入儀器進行分析叫做直接液相微萃取法。這種方法適合于萃取較為潔凈的液體樣品。但隨著技術(shù)的發(fā)展,這種方法的局限性如懸在色譜微量進樣器針頭上的有機液滴在樣品攪拌時易于脫落、萃取時間長、液滴不穩(wěn)定等也逐漸顯現(xiàn)出來,目前該方法正逐步被新型液相微萃取技術(shù)所取代。
分散液液微萃取
分散液液微萃取(DLLME)是Rezaee等于2006年基于由樣本溶液、萃取劑(與水互不相溶)和分散劑(與水相和萃取劑混溶)組成的三重溶液系統(tǒng)開發(fā)的一種新型LPME技術(shù)。在該技術(shù)中,使用注射器將萃取劑與分散劑的混合物快速注入樣本溶液中,會產(chǎn)生高強度的瑞流,從而將萃取劑以小液滴的形式完全分散到樣本溶液中,形成由萃取劑、分散劑和樣本溶液組成的乳濁液體系。由于萃取劑小液滴與樣本溶液之間極大的接觸面積,使疏水性目標物迅速在兩相之間達到萃取平衡,實現(xiàn)向萃取劑中的富集。萃取結(jié)束后,經(jīng)離心分層,萃取劑聚集、沉淀到離心管底部,用微量注射器收集后,可直接進樣分析。
DLLME繼承了其他LPME技術(shù)中操作簡單、富集倍數(shù)高、分析成本低等優(yōu)點,并且由于在DLLME中萃取可以在極短的時間內(nèi)達到平衡,使得萃取時間大大縮短。此外,DLLME中不存在SDME中懸掛液滴脫落以及HF-LPME中氣泡影響方法重現(xiàn)性等問題。因此本方法在很多領(lǐng)域中得到了廣泛的應(yīng)用。
中空纖維液相微萃取( HF -LPME )
方法將萃取劑固定在中空纖維的微孔結(jié)構(gòu)中,形成分離相-萃取劑-固定相的三液相體系,由于中空纖維的結(jié)構(gòu)可以實現(xiàn)對大分子化合物、大顆粒雜質(zhì)的阻擋,使目標物在三液相體系中傳遞,實現(xiàn)分離和富集。與SDME相比,HF-LPME有如下優(yōu)點:一是萃取劑存在于中空纖維腔中,與樣品溶液不直接接觸,可通過加速攪拌,實現(xiàn)提高萃取效率;二是實驗使用的中空纖維是商品化的聚丙烯纖維,它對大多有機溶劑具有較強的結(jié)合能力,在萃取過程中不會發(fā)生有機溶劑滲出。
在HF-LPME萃取技術(shù)中,樣品溶液和中空纖維空腔中的萃取溶劑分別作為給出相和萃取相,給出相中的目標物經(jīng)由中空纖維孔隙的有機液膜再轉(zhuǎn)移到萃取相中,完成萃取過程。若HF-LP ME中空纖維壁和空腔內(nèi)的溶液為同一溶劑,則構(gòu)成兩相LPME模式;若中空纖維壁和空腔內(nèi)所承載的是不同溶劑,則形成三相LPME萃取模式。萃取的富集效果因在各相中分配系數(shù)不同而實現(xiàn)。目前,HF-LPME已廣泛應(yīng)用于在痕量、超痕量物質(zhì)分析中。
萃取效率的影響因素
影響LPME萃取效果的個因素主要有:有機溶劑種類、液滴體積、攪拌程度、萃取時間、萃取溫度、pH值以及鹽效應(yīng)等。
有機溶劑的影響
基于“相似相溶原理”,合適有機溶劑的選擇是提高萃取效果的關(guān)鍵。常用的有機溶劑有:甲苯、二氯甲烷、四氯化碳、正辛醇、正己烷等。萃取溶劑應(yīng)對目標物有良好的選擇性和溶解度、低的揮發(fā)性和水溶性以及良好的色譜分析效果,另外對于HF-LPME還要求有機溶劑與中空纖維有良好的親和力;對于HS-LPME,有機溶劑還需有較低的蒸汽壓,以減少揮發(fā)。
液滴體積的影響
液滴體積的大小對萃取效果影響很大。液滴體積越大,目標物的萃取量越大,有利于提高分析的靈敏度。但由于目標物進入液滴是擴散過程,液滴體積越大,萃取速度越慢,平衡時間也就越長。因此應(yīng)該選擇合適的液滴大小。
攪拌程度的影響
為使樣品均勻,盡快達到分配平衡,縮短平衡時間,通常在處理中要對樣品進行攪拌。攪拌程度是影響LPME分析速度的重要因素。有效的攪拌可加速目標物的擴散速度、減小擴散層的厚度,從而縮短平衡時間,提高萃取效率,但如果攪拌程度過大,有可能破壞萃取液滴的穩(wěn)定性,降低萃取效果。
萃取時間的影響
對于溶解度較小的目標物,一般達到平衡需要較長的時間,選擇的萃取時間應(yīng)該在平衡之前。萃取時間直接影響到分析結(jié)果重現(xiàn)性,須注意控制時間。另外,雖然有機溶劑在水溶性差,但會隨著時間的延長,出現(xiàn)體積損失的現(xiàn)象,通常需要加入內(nèi)標以修正這種變化,
萃取溫度的影響
萃取溫度從兩方面的影響萃取效果,溫度升高,目標物向有機相的擴散加快,萃取速度增快,可以縮短平衡時間;但是同時,升溫會降低目標物的分配系數(shù),減少其在有機溶劑中的分配。所以,應(yīng)同時考慮萃取時間和萃取效果,確定最佳的萃取溫度。
pH值與鹽效應(yīng)
溶液的基體效應(yīng)會影響目標物在有機溶劑和樣品之間的分配系數(shù)。通過調(diào)節(jié)溶液的pH值,能夠改變某些化合物在水溶液中的溶解度,促進目標物向有機相擴散。通過加入無機鹽,可以增加溶液的極性,也可以提高目標物向有機相擴散。
---液相微萃取的行業(yè)應(yīng)用--
隨著液相微萃取技術(shù)的不斷發(fā)展,其應(yīng)用領(lǐng)域也越來越廣泛。LPME 最初多用于分析水樣等清潔的樣品中的有機化合物,主要應(yīng)有于食品分析、環(huán)境監(jiān)測等方面。DLLME和 HF-LPME技術(shù)的出現(xiàn),拓展了它的應(yīng)用范圍,使LPME在生物及醫(yī)藥樣品分析方面得以廣泛應(yīng)用,同時在環(huán)境監(jiān)測方面也大大擴展了分析物的范圍,F(xiàn)在LPME技術(shù)已在環(huán)境分析、生物分析、食品分析、藥物分析、醫(yī)學及法醫(yī)鑒定等領(lǐng)域得到廣泛地應(yīng)用。
環(huán)境監(jiān)測
在環(huán)境監(jiān)測領(lǐng)域LMPE方法應(yīng)用較多,例如:環(huán)境水樣中的有機污染物的檢測、土壤中污染物檢測等。液相微萃取技術(shù)還有分析環(huán)境中的一些重金屬離子及其有機物的應(yīng)用,例如:采用LMPE技術(shù)測定水樣中的甲基汞,取得了很好的試驗效果。
食品分析
有實驗表明,在采用平衡態(tài)頂空液相微萃取-氣相色譜法對啤酒中的多種醇類進行分析時,通過優(yōu)化溶劑的極性、攪拌程度、萃取溫度、萃取時間以及離子強度等條件, 可以得到了滿意的結(jié)果。該實驗表明LPME技術(shù)在食品分析領(lǐng)域具有巨大的潛力。
生物分析
由于生物樣品基質(zhì)復雜,基體干擾強烈, 對生物樣品的前處理存在著手工操作多 , 步驟繁瑣等缺點 , 而且靈敏度也很低。近年來越來越多的實驗者們嘗試著將LPME技術(shù)用于生物分析領(lǐng)域。